Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(6): 136, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679693

RESUMO

MAIN CONCLUSION: Expression profiling of NF-Y transcription factors during dehydration and salt stress in finger millet genotypes contrastingly differing in tolerance levels identifies candidate genes for further characterization and functional studies. The Nuclear Factor-Y (NF-Y) transcription factors are known for imparting abiotic stress tolerance in different plant species. However, there is no information on the role of this transcription factor family in naturally drought-tolerant crop finger millet (Eleusine coracana L.). Therefore, interpretation of expression profiles against drought and salinity stress may provide valuable insights into specific and/or overlapping expression patterns of Eleusine coracana Nuclear Factor-Y (EcNF-Y) genes. Given this, we identified 59 NF-Y (18 NF-YA, 23 NF-YB, and 18 NF-YC) encoding genes and designated them EcNF-Y genes. Expression profiling of these genes was performed in two finger millet genotypes, PES400 (dehydration and salt stress tolerant) and VR708 (dehydration and salt stress sensitive), subjected to PEG-induced dehydration and salt (NaCl) stresses at different time intervals (0, 6, and 12 h). The qRT-PCR expression analysis reveals that the six EcNF-Y genes namely EcNF-YA1, EcNF-YA5, EcNF-YA16, EcNF-YB6, EcNF-YB10, and EcNF-YC2 might be associated with tolerance to both dehydration and salinity stress in early stress condition (6 h), suggesting the involvement of these genes in multiple stress responses in tolerant genotype. In contrast, the transcript abundance of finger millet EcNF-YA5 genes was also observed in the sensitive genotype VR708 under late stress conditions (12 h) of both dehydration and salinity stress. Therefore, the EcNF-YA5 gene might be important for adaptation to salinity and dehydration stress in sensitive finger millet genotypes. Therefore, this gene could be considered as a susceptibility determinant, which can be edited to impart tolerance. The phylogenetic analyses revealed that finger millet NF-Y genes share strong evolutionary and functional relationship to NF-Ys governing response to abiotic stresses in rice, sorghum, maize, and wheat. This is the first report of expression profiling of EcNF-Ys genes identified from the finger millet genome and reveals potential candidate for enhancing dehydration and salt tolerance.


Assuntos
Fator de Ligação a CCAAT , Eleusine , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Eleusine/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Desidratação/genética , Secas , Estresse Salino/genética , Filogenia , Estresse Fisiológico/genética , Genótipo , Tolerância ao Sal/genética , Genes de Plantas/genética
2.
Crit Rev Biotechnol ; 43(2): 309-325, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35443842

RESUMO

Seed longevity is a measure of the viability of seeds during long-term storage and is crucial for germplasm conservation and crop improvement programs. Also, longevity is an important trait for ensuring food and nutritional security. Thus, a better understanding of various factors regulating seed longevity is requisite to improve this trait and to minimize the genetic drift during the regeneration of germplasm. In particular, seed deterioration of cereal crops during storage adversely affects agricultural productivity and food security. The irreversible process of seed deterioration involves a complex interplay between different genes and regulatory pathways leading to: loss of DNA integrity, membrane damage, inactivation of storage enzymes and mitochondrial dysfunction. Identifying the genetic determinants of seed longevity and manipulating them using biotechnological tools hold the key to ensuring prolonged seed storage. Genetics and genomics approaches had identified several genomic regions regulating the longevity trait in major cereals such as: rice, wheat, maize and barley. However, very few studies are available in other Poaceae members, including millets. Deploying omics tools, including genomics, proteomics, metabolomics, and phenomics, and integrating the datasets will pinpoint the precise molecular determinants affecting the survivability of seeds. Given this, the present review enumerates the genetic factors regulating longevity and demonstrates the importance of integrated omics strategies to dissect the molecular machinery underlying seed deterioration. Further, the review provides a roadmap for deploying biotechnological approaches to manipulate the genes and genomic regions to develop improved cultivars with prolonged storage potential.


Assuntos
Grão Comestível , Longevidade , Grão Comestível/genética , Longevidade/genética , Sementes/genética , Sementes/metabolismo , Produtos Agrícolas/genética , Proteômica
3.
Methods Mol Biol ; 2408: 37-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35325415

RESUMO

Domestication spanning over thousands of years led to the evolution of crops that are being cultivated in recent times. Later, selective breeding methods were practiced by human to produce improved cultivars/germplasm. Classical breeding was further transformed into molecular- and genomics-assisted breeding strategies, however, these approaches are labor-intensive and time-consuming. The advent of omics technologies has facilitated the identification of genes and genetic determinants that regulate particular traits allowing the direct manipulation of target genes and genomic regions to achieve desirable phenotype. Recently, genome editing technologies such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-Associated protein 9 (Cas9) have gained popularity for precise editing of genes to develop crop varieties with superior agronomic, physiological, climate-resilient, and nutritional traits. Owing to the efficiency and precision, genome editing approaches have been widely used to design the crops that can survive the challenges posed by changing climate, and also cater the food and nutritional requirements for ever-growing population. Here, we briefly review different genome editing technologies deployed for crop improvement, and the fundamental differences between GE technology and transgene-based approach. We also summarize the recent advances in genome editing and how this radical expansion can complement the previously established technologies along with breeding for creating designer crops.


Assuntos
Edição de Genes , Genoma de Planta , Produtos Agrícolas/genética , Genoma de Planta/genética , Melhoramento Vegetal , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
4.
Genomics ; 114(3): 110347, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337948

RESUMO

Kodo millet (Paspalum scrobiculatum L.) is a small millet species known for its excellent nutritional and climate-resilient traits. To understand the genes and pathways underlying dehydration stress tolerance of kodo millet, the transcriptome of cultivar 'CO3' subjected to dehydration stress (0 h, 3 h, and 6 h) was sequenced. The study generated 239.1 million clean reads that identified 9201, 9814, and 2346 differentially expressed genes (DEGs) in 0 h vs. 3 h, 0 h vs. 6 h, and 3 h vs. 6 h libraries, respectively. The DEGs were found to be associated with vital molecular pathways, including hormone metabolism and signaling, antioxidant scavenging, photosynthesis, and cellular metabolism, and were validated using qRT-PCR. Also, a higher abundance of uncharacterized genes expressed during stress warrants further studies to characterize this class of genes to understand their role in dehydration stress response. Altogether, the study provides insights into the transcriptomic response of kodo millet during dehydration stress.


Assuntos
Paspalum , Desidratação/genética , Perfilação da Expressão Gênica , Transcriptoma , Antioxidantes , Regulação da Expressão Gênica de Plantas
5.
Physiol Plant ; 173(4): 1587-1596, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537966

RESUMO

Soil salinity is one of the major threats that pose challenges to global cereal productivity and food security. Cereals have evolved sophisticated mechanisms to circumvent stress at morpho-physiological, biochemical, and molecular levels. Salt stress cues are perceived by the roots, which trigger the underlying signaling pathways that involve phytohormones. Each phytohormone triggers a specific signaling pathway integrated in a complex manner to produce antagonistic, synergistic, and additive responses. Phytohormones induce salt-responsive signaling pathways to modulate various physiological and anatomical mechanisms, including cell wall repair, apoplastic pH regulation, ion homeostasis, root hair formation, chlorophyll content, and leaf morphology. Exogenous applications of phytohormones moderate the adverse effects of salinity and improve growth. Understanding the complex hormonal crosstalk in cereals under salt stress will advance the knowledge about cooperation or antagonistic mechanisms among hormones and their role in developing salt-tolerant cereals to enhance the productivity of saline agricultural land. In this context, the present review focuses on the mechanisms of hormonal crosstalk that mediate the salt stress response and adaptation in graminaceous crops.


Assuntos
Salinidade , Tolerância ao Sal , Produtos Agrícolas , Reguladores de Crescimento de Plantas , Estresse Salino , Estresse Fisiológico
6.
Theor Appl Genet ; 134(10): 3147-3165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34091694

RESUMO

KEY MESSAGE: Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.


Assuntos
Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Grão Comestível/genética , Fome , Micronutrientes/análise , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genômica , Valor Nutritivo , Proteínas de Plantas/genética
7.
Adv Genet ; 107: 89-120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33641749

RESUMO

Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.


Assuntos
Produtos Agrícolas/química , Micronutrientes/farmacocinética , Ácido Fítico/metabolismo , Melhoramento Vegetal/métodos , Fenômenos Fisiológicos Vegetais , Disponibilidade Biológica , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Humanos , Ácido Fítico/química , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Estresse Fisiológico/fisiologia
8.
J Biotechnol ; 318: 57-67, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433921

RESUMO

The study reports the identification and expression profiling of five major classes of C4 pathway-specific genes, namely, carbonic anhydrase (CaH), phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), NADP-dependent malate dehydrogenase (MDH) and NADP-dependent malic enzyme (NADP-ME), in the model species, Setaria italica and Setaria viridis. A total of 42 and 41 genes were identified in S. italica and S. viridis, respectively. Further analysis revealed that segmental and tandem duplications have contributed to the expansion of these gene families. RNA-Seq derived expression profiles of the gene family members showed their differential expression pattern in tissues and dehydration stress. Comparative genome mapping and Ks dating provided insights into their duplication and divergence in the course of evolution. Expression profiling of candidate genes in contrasting S. italica cultivars subjected to abiotic stresses and hormone treatments showed distinct stress-specific upregulation of SiαCaH1, SißCaH5, SiPEPC2, SiPPDK2, SiMDH8, and SiNADP-ME5 in the tolerant cultivar. Overexpression of SiNADP-ME5 in heterologous yeast system enabled the transgenic cells to survive and grow in dehydration stress conditions, which highlights the putative role of SiNADP-ME5 in conferring tolerance to dehydration stress. Altogether, the study highlights key genes that could be potential candidates for elucidating their functional roles in abiotic stress response.


Assuntos
Genoma de Planta/genética , Setaria (Planta)/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Fotossíntese/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Setaria (Planta)/classificação , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/metabolismo
9.
Crit Rev Biotechnol ; 39(4): 587-601, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30947560

RESUMO

Small RNAs (sRNA) are reported to play pivotal roles in the epigenetic and post-transcriptional regulation of gene expression during growth, development, and stress response in plants. Recently, the involvement of two different classes of sRNAs namely, miRNAs (microRNAs), and siRNAs (small interfering RNAs) in biotic stress response has been underlined. Notably, during virus infection, these sRNAs deploy antiviral defense by regulating the gene expression of the modulators of host defense pathways. As a counter defense, viruses have evolved strategic pathways involving the production of suppressors that interfere with the host silencing machinery. This molecular arms race between the sophisticated gene regulatory mechanism of host plants fine-tuned by sRNAs and the defense response exhibited by the virus has gained much attention among the researchers. So far, several reports have been published showing the mechanistic insights on sRNA-regulated defense mechanism in response to virus infection in several crop plants. In this context, our review enumerates the molecular mechanisms underlying host immunity against viruses mediated by sRNAs, the counter defense strategies employed by viruses to surpass this immunogenic response and the advances made in our understanding of plant-virus interactions. Altogether, the report would be insightful for the researchers working to decode the sRNA-mediated defense response in crop plants challenged with virus infection.


Assuntos
MicroRNAs/genética , Doenças das Plantas/genética , Vírus de Plantas/genética , RNA Interferente Pequeno/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA